

1-Phenylethyl^e 75-77 $C_{16}H_{16}O_2(8)$ 79.97 6.71 80.19 6.79 77
^a K. N. Trivedi, J. Sci. Ind. Res. (India), 21B, 402 (1962). ^b G. Urbain and C. Mentzer, Bull. Soc. Chim. France, 11, 171 (1944). **e** Lit. 160' (80 mm): **I.** Heil-*Chem. Ab&.,* **60,** The infrared spectrum *^c*See ref 3. bron, Ed., "Dictionary of Organic Compounds,'' Oxford University Press, New York, **N.** Y., 1953. 15808f (1964). *v* Lit.⁴ 220–225° (15 mm). ^A B. D. West and K. P. Link, J. Helerocyclic Chem., 2, 93 (1965). *i* The was identical with a commercial sample. *i* The infrared spectrum was identical with a sample of the **^d**C. **K.** Wiener, C. H. Schroeder, B. D. West, and **K.** p. Link, *J. Org. Chem.,* 27,3086 (1962). phary of Organic Compounds,'' Oxford University Press, New York, N. Y., 1953. If Lit. 56–57°
Lit.^ 220–225° (15 mm). I^ B. D. West and K. P. Link, *J. Heterocyclic Chem.*, 2, 93 (1965). If

hydrochloric acid. The products were crystallized from the solvents given in Table 11.

^{*a*} See Table I, ref *h.* \circ Lit. mp 230°: ref *a*, Table I. \circ Lit. mp 205': I. **31.** Heilbron and D. W. Hill, *J. Chem.* **SOC.,** 1705 (1957). *d* Lit. mp 240°: ref *b*, Table I. *c* Lit.³ mp 201-202° Lit.³ mp 175-177°. *a* Lit.³ mp 177-178°. *h* Ethanol-water. **¹**Acetic acid.

To show that neither of the above reactions disturbs the asymmetry of an α substituent, (S) -o-hydroxy- β -phenylcaprophenone,¹¹ α^{25} - 56.1° (neat), was converted to 3- α -phenylbutyl-4-hydroxycoumarin, $[\alpha]^{24}D -136^{\circ}$ *(c 1, 5% aqueous NaOH).* Crystallization of this product was not permissible since it is known¹¹ that the crystals would be enriched in racemic material. Decarboxylation of this product by the above method yielded the original ketone, $\alpha^{25}D - 55.9^{\circ}$ (neat).

Registry No.-1, 118-93-4; **2,** 610-99-1; **3,** 2491-31-8; **4,** 3516-95-8; *5,* 15074-13-2; *6,* 2732-23-2; 7,15074-15-4; 8, 15074-16-5; **9,** 15074-17-6; **10,** 15074-18-7; **11,** 1786- 05-6; **12,** 15074-20-1; **13,** 435-97-2; **14,** 15074-22-3; *3-(o***hydroxyphenyl)-5-phenyl-2-cyclohexen-l-one,** 15156- 56-6; $(+)$ -3- $(o$ -hydroxyphenyl)-5-phenyl-2-cyclohexen-1-one, 15074-23-4; 3α -phenylbutyl-4-hydroxycoumarin, 15074-24-5.

Acknowledgment.-This work was supported by Public Health Service Grant No. RO1-HE 10527-01 from the National Heart Institute. We wish to thank Mrs. Ruby Ju for the C-H analyses.

Thermal Isomerization of Ergosterol and Dehydrocholesterol

JOSEPH WOLINSKY, LAWRENCE L. BAXTER, AND **JAMES HAMSHER**

Department of *Chemistry, Purdue University, Lafayette, Indiana gYQO7*

Received July 18, 1967

The thermal rearrangement of 1,3-dienes involving a 1,5-hydrogen shift and concomitant migration of two carbon-carbon double bonds has been widely investigated in acyclic^{1,2} and cyclic³⁻⁶ systems.

Pines^{7} has shown that 1,3-cyclohexadienes undergo reversible 1,5-hydrogen shifts in the temperature range of 200-400", but at higher temperature, 450-500", the cleavage of carbon-carbon single bonds becomes important and is accompanied by extensive skeletal reorganization and aromatization. In this note we report the thermal behavior of ergosterol and $\Delta^{5.7}$ -dehydrocholesterol which, as will be seen, is comparable with the behavior of simpler 1,3-cyclohexadienes in the higher temperature range.

Ergosterol appears to be stable below 350°. We have not been able to detect the isomer resulting from a 1,5 hydrogen shift employing the chromatographic procedures available to us.

Ergosterol is converted into a complicated mixture of sterols on heating to $400 \pm 20^{\circ}$ for 1-5 min. At the end of 1 min ergosterol is still present in appreciable quantity, but after 3-5 min is largely destroyed. The sterol mixture was subjected to alumina chromatography which led to the isolation of a small amount of nonpolar, fluorescent material which was not char-

- **(3) A. P. terBorg, H. Kloosterziel, and N. van Meurs,** *Rec. Trav. Chim.,* **82, 717, 741, 1189 (1963).**
- **(4)** W. **R.** Roth, *Tetrahedron Letters,* **1009 (1964).**
- **(5) J. W. H. Watthey and** S. **Winstein.** *J. Am. Chem. Soc.,* **86, 3716 (1963).**
- (6) **R. B. Woodward and R. Hoffman,** *ibid., 8'7,* **2511 (1965).**
- **(7) H. Pines and** R. **H. Kozlowski,** *ibid.,* **78, 3776 (1956).**

⁽¹⁾ J. **Wolinsky, M. Baird, and** B. **Chollar,** *J. Am. Chem. SOC.,* **84, 2775 (1962).**

⁽²⁾ H. M. Frey and R. J. **Ellis,** *J. Chem.* **SOC., 4770 (1965).**

acterized further and various sterol mixtures as indicated by ultraviolet analysis. The sterol fractions were acetylated and chromatographed on silica gel to give a sterol with no absorption in the ultraviolet above **210** mp which has not been identified and a mixture of ergosteryl acetate and another acetate, λ_{max} 242 and **250** mp which was isolated in pure form by repeated recrystallization from acetone. The purified acetate exhibited mp $175-175.5^{\circ}$, λ_{max} 235, 242 and 251 m μ , and displayed infrared and nmr spectra identical with those of authentic ergosterol D acetate.⁸ The identity was further confirmed by hydrolysis to the parent alcohol followed by spectral and thin layer chromatographic comparison with an authentic sample of ergosterol D.

A fourth acetate was isolated from later fractions and exhibited a singlet aromatic resonance at 6.85 ppm and was shown by infrared and nmr analyses, mixture melting point, and chromatographic behavior to be identical with neoergosteryl acetate.⁹

Evidence that neoergosterol was produced by a demethanation reaction was provided by the mass spectral identification of methane among the gases produced during the thermal reaction.

At **400"** it was estimated that ergosterol D is the major component of the sterol mixture, while the amount of neoergosterol seems to increase at higher temperature.

The thermal isomerization of $\Delta^{5,7}$ -dehydrocholesterol seemed to be slightly more complicated, but the major product) was readily identified as cholesta-7,9(11) $dien-3\beta$ -ol.

It can now be claimed that isomerization routes to all the ergosterol isomers $(B_1, B_2, B_3, A_1, D_2)$ are available.

Experimental Section

Thermal Rearrangement of Ergosterol. $-A$ 3.0-g sample of recrystallized ergosterol, mp 160-161", was placed in a 5O-ml, round-bottom flask equipped with a condenser and maintained under a nitrogen atmosphere. The flask was submerged in a Woods metal bath at $400 \pm 10^{\circ}$ for 5 min. The yellow solid which resulted on cooling was dissolved in a minimal amount of benzene and applied to a column containing 300 g of neutral alumina. Elution with benzene and 10% ether-benzene gave four fractions: (a) 0.40 *g* which showed no absorption in the ultraviolet above 210 mr; (b) **0.056** g of an oil; (c) **2.40** g of sterol mixture; and (d) 0.154 g, mp 160-161 ', whose melting point was not depressed on admixture with ergosterol. The acetate of this fraction ex-

(8) We **wish** to **express our appreciation** to **Dr.** E. **M. Chamberlin** for making this sample available.
(9) We wish to express our appreciation to Dr. Y. Sato for making avail-

able a sample of **neoergosterol.**

hibited mp 170-172° and an infrared spectrum identical with that of authentic ergosteryl acetate.

Fraction c was kept with a large excess of acetic anhydride and a trace of pyridine for **24** hr. The volatile reactants were removed under diminished pressure and thin layer chromatography of the residue on silica gel G showed a minimum of three spots. **A** small portion was placed on a silica gel column and eluted with 12.5% benzene in pentane to give the following fractions. (a) A solid, mp 148-151[°], no absorption in the ultraviolet above 220 m μ , which was not investigated further. (b) A solid, λ_{max} 242 m μ (ϵ 12,300), which after repeated recrystallization from acetone showed mp $175-175.5^{\circ}$, λ_{max} 235, 242, and 251 mp **(e** 12,600, 15,000, and 10,300, respectively). The melting point of this sample was not depressed on admixture with an authentic sample of ergosterol D acetate and its infrared spectrum proved to be identical with that of the authentic sample. Hydrolysis of the acetate afforded an alcohol: mp $164-165^{\circ}$; λ 235, 242 (16,300), and 251 m μ . This sample did not depress the melting point of an authentic sample of ergosterol D, and its infrared spectrum was identical with that of the authentic \mathbf{s} ample. \mathbf{c} (c) \mathbf{A} solid which after recrystallization from ether–methanol showed mp 117–117.5°, $[\alpha]^{32}$ –6.5°, λ_{max} 269 and 278 m μ **(e** 440), was obtained as the third fraction. This solid did not depress the melting point of an authentic sample of neoergosteryl acetate. This solid also showed the same *Ri* value as neoergosteryl acetate on thin layer chromatography. Hydrolysis with alkali afforded a solid, mp $152-153^{\circ}$, $[\alpha]^{28}$ -8.3°, λ 269 (435) and 278 m μ , whose nmr and infrared spectra were identical with those of an authentic sample of neoergosterol.

A similar separation of the sterol acetates was achieved using alumina, except in this instance neoergosteryl acetate eluted before ergosterol D acetate. It was estimated, by ultraviolet analysis of various chromatographic fractions, that fraction c contained 70-77% ergosterol \overrightarrow{D} and 15-18% neoergosterol.

Thermal Rearrangement of 7-Dehydrocholesterol.-A 3.0-g sample of 7-dehydrocholesterol was heated at 400' for *3* min. Column chromatography using alumina gave five fractions: (a) 50 mg of oil showing no ultraviolet absorption; (b) 100 mg of oil which could not be crystallized; (c) 800 mg of solid, mp 102- 110° , λ_{max} 235, 242 (ϵ 16,000), and 250 m μ (lit., for cholesta-7,9-(11)-dien-3 β -ol, mp 107-110°,¹⁰ λ_{max} 235, 243 *(* ϵ 16,100), and 251 $(m\mu);$ ¹¹ (d) 1.5 g of solid, mp 148-150[°], whose infrared and ultraviolet spectra were identical with those of $\Delta^{5.7}$ -dehydrocholesterol; and (e) 0.5 g of oil which was not characterized.

Registry No.-Ergosterol, 57-87-4; dehydrocholesterol, 434-16-12.

(10) L. F. **Fieser and** J. *E.* **Herz,** *J. Am. Chen.* Soc.. **76, 121 (1053). (11)** R. **.intonucci,** S. **Uernstein, D. Giancola, and** K. J. **Sax,** *J. Org. Chen.,* **16, 1891 (1951).**

Kinetics of Bromination of Benzene and

Methylbenzenes in Acetic and

Trifluoroacetic Acids',?

JACQUES-EMILE DUBOIS, PIERRE ALCAIS, AND FRED ROTHENBERG

Laboratoire de Chinaie Organique Physique de la Faculté des Sciences de Paris, AssociB au C.S.R.S., Paris 5i?, France

Received June 22, 1967

As part of a general investigation of rapid halogenation reactions, kinetic studies of the bromination in water of aromatic amines,³ of anisoles,⁴ and of benzene

(1) Paper I1 **in a series: Bromination** of **Polymethylbenzenes.**

(2) Paper I: P. Alcais, F. Rothenberg, and J. E. Dubois, J. Chim. *Phya.,* **1443 (1966).**

(3) (a) J. **E. Dubois,** P. **Alcais, and** *G.* **Barbier,** *Compt. Rend.,* **264, 3000 (1962); (b) J.** E. **Dubois and** R. **Uzan,** *Tetrahedron Letters,* **2397 (1964);** *(c) ibid.,* **309 (1965): (d) J. E. Dubois, P. Alcais, and** *G.* **Barbier,** *Bull. Soc. Chim. France,* **in press.**

(4) (a) J. E. Dubois and *J. J.* **Aaron,** *Conpt. Rend.,* **268, 2313 (1964); (b)** *J. Chim. Phya.,* **1354 (1964).**